Dynamic Programming Equation for the Mean Field Optimal Stopping Problem

نویسندگان

چکیده

We study the optimal stopping problem of McKean-Vlasov diffusions when criterion is a function law stopped process. A remarkable new feature in this setting that time also impacts dynamics process through dependence coefficients on law. The mean field introduced weak formulation terms joint marginal underlying and survival This specification satisfies dynamic programming principle. corresponding equation an obstacle Wasserstein space, obtained by means general It\^o formula for flows laws c\`adl\`ag semimartingales. Our verification result characterizes nature policies, highlighting crucial need to randomized stopping. effectiveness our illustrated various examples including mean-variance problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mean Field Game of Optimal Stopping

We formulate a stochastic game of mean field type where the agents solve optimal stopping problems and interact through the proportion of players that have already stopped. Working with a continuum of agents, typical equilibria become functions of the common noise that all agents are exposed to, whereas idiosyncratic randomness can be eliminated by an Exact Law of Large Numbers. Under a structu...

متن کامل

Dynamic Programming for Mean-Field Type Control

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

The Dynamic Programming Equation for the Problem of Optimal Investment Under Capital Gains Taxes

This paper considers an extension of the Merton optimal investment problem to the case where the risky asset is subject to transaction costs and capital gains taxes. We derive the dynamic programming equation in the sense of constrained viscosity solutions. We next introduce a family of functions (Vε)ε>0, which converges to our value function uniformly on compact subsets, and which is character...

متن کامل

The Problem of Optimal Stopping

The problem of Optimal Stopping is of fundamental importance for sequential analysis, for the detection of signals in a background of noise, and also for pricing American-type options in the modern theory of finance. We shall review in this talk two relatively recent approaches to this problem: the deterministic or “pathwise” approach of Davis & Karatzas (1994), and the “integral representation...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Control and Optimization

سال: 2023

ISSN: ['0363-0129', '1095-7138']

DOI: https://doi.org/10.1137/21m1404259